Generation of Emotion Control Vector Using MDS-Based Space Transformation for Expressive Speech Synthesis

نویسندگان

  • Yan-You Chen
  • Chung-Hsien Wu
  • Yu-Fong Huang
چکیده

In control vector-based expressive speech synthesis, the emotion/style control vector defined in the categorical (CAT) emotion space is uneasy to be precisely defined by the user to synthesize the speech with the desired emotion/style. This paper applies the arousal-valence (AV) space to the multiple regression hidden semi-Markov model (MRHSMM)-based synthesis framework for expressive speech synthesis. In this study, the user can designate a specific emotion by defining the AV values in the AV space. The multidimensional scaling (MDS) method is adopted to project the AV emotion space and the categorical (CAT) emotion space onto their corresponding orthogonal coordinate systems. A transformation approach is thus proposed to transform the AV values to the emotion control vector in CAT emotion space for MRHSMM-based expressive speech synthesis. In the synthesis phase given the input text and desired emotion, with the transformed emotion control vector, the speech with the desired emotion is generated from the MRHSMMs. Experimental result shows the proposed method is helpful for the user to easily and precisely determine the desired emotion for expressive speech synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

Expressive speech synthesis in MARY TTS using audiobook data and emotionML

This paper describes a framework for synthesis of expressive speech based on MARY TTS and Emotion Markup Language (EmotionML). We describe the creation of expressive unit selection and HMM-based voices using audiobook data labelled according to voice styles. Audiobook data is labelled/split according to voice styles by principal component analysis (PCA) of acoustic features extracted from segme...

متن کامل

Prediction of Emotions from Text using Sentiment Analysis for Expressive Speech Synthesis

The generation of expressive speech is a great challenge for text-to-speech synthesis in audiobooks. One of the most important factors is the variation in speech emotion or voice style. In this work, we developed a method to predict the emotion from a sentence so that we can convey it through the synthetic voice. It consists of combining a standard emotion-lexicon based technique with the polar...

متن کامل

Enabling controllability for continuous expression space

A continuous expression space assumes that each utterance contains individual expressions. Thus, it can be used to model detailed expression information in speech data. However, since an infinite number of different expressions can be contained in the continuous expression space, it is very difficult to manually label them. That means, these expressions are very hard to identify and to extract ...

متن کامل

Toward naturally expressive speech synthesis: data - driven emotion detection using latent affective analysis

A necessary step in the generation of expressive speech synthesis is the automatic detection and classification of emotions most likely to be present in textual input. Though increasingly data-driven, emotion analysis still relies on critical expert knowledge to isolate the emotional keywords or keysets necessary to the construction of affective categories. This makes it vulnerable to any discr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016